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COMMENT 

An algorithm for characters of Hecke algebras H,(q) of 
type &-I 

J Van der Jeugtt 
Laboratorium voor Numerieke Wiskunde en Informatica, Rijksuniversiteit Gent, 
Krijgdaan 281-S9,89000 Gent, Belgium 

Received 3 December 1990 

Abstract. Recently the characters of irreducible representations of the Hecke al- 
gebra Hn(q) of type A,-, were identified with the transition coefficients relating q- 
generalizedpower sumsymmetric functions to Schur functions (King and Wybourne 
1990a, b). Using this result, we obtain an easy combinatorial algorithm for calculat- 
ing the characters. 

The complex Hecke algebras H,,(q) of type An-l have become objects of great interest 
since the discovery of the Jones polynomial (Jones 1985, 1987) and the recognition of 
close connections between solvable problems in statistical physics and corresponding 
problems in the theory of knots and braids (Wadati el  all989). The traces of the  Hecke 
algebras H,,(q) play an important role in applications, and they may be calculated from 
explicit constructions of the irreducible representations of H,, (q) (Dipper and James 
1987). Recently, a method was introduced in order to calculate the traces directly, 
without first constructing explicit representations (King and Wybourne 1990, 1991). 
In this letter we show that this direct method gives rise to an easy combinatorial 
algorithm for calculating these traces. 

The Hecke algebra H,,(q) ,  with q an arbitrary but fixed complex parameter, is 
generated by gi (i = 1,2 , .  . . , n - 1) subject to the relations 

g? = ( q  - l)gi + q  for i =  1 , 2 , .  . . , n  - 1 

gigl+!gi = gi+!gigi+? 

gigj = gjgi 

for i = L 2 , .  . . , n - 2 

for li - j l  2 2. 

It follows that for q = 1 the Hecke algebra is the group algebra of the symmetric group 
S,, since each gi can be identified with the transposition si = ( i , i  + 1). 

A linear trace on the Hecke algebras was defined by Ocneanu. This theory expresses 
the trace of any given element of the Hecke algebra as a linear sum of traces of 
so-called minimal words v .  Such a mininal word v has a certain connectivity class 
p = ( p 1 , p 2 , .  . . ,p,,,), where p i s  a partition of n (King and Wybourne 1990, 1991). On 
the other hand, an irreducible representation rA of H,,(q) is also characterized by a 
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partition X of n.  Then it w a s  shown by King and Wybourne (1990) that  the trace of 
U in the irreducible representation xA, given by 

trs,(v) = x ; ( d  

p p ( q i t )  = zx;(q)sA(t). (1) 

where x ; ( q )  are the Hecke algebra characters, is defined by the relation 

A 

Herein, sA( t )  is a Schur function (Macdonald 1979), and p,(q; t )  is the q-generalized 
power sum symmetric function defined by King and Wybourne (1990): 

with 

For q = 1, the functions p, (q;  t )  are the ordinary power sum symmetric functions, and 
hence it follows from (1) that  in that case the Hecke algebra characters x ; ( q )  reduce 
to the characters of the symmetric group S, (Macdonald 1979, p 62). 

i t  foiiows from ( i j  and [2) that  the Eecke aigebra characters x a ( q )  can be deter- 
mined by calculating consecutive products of Schur functions of the type ~ ( ~ + ! , ~ b ) ( t ) .  

This is essentially the method explained in King and Wybourne (1990). In this letter 
we shall show that  this method can be simplified, leading to a combinatorial expression 

We first introduce some new objects. Let X and p be two partitions with X 3 p (see 
Macdonald (1979) for the conventions and notations concerning partitions). The skew 
diagram B = X - p is called a boundary strip if it contains no 2 x 2 block of squares. 
For example, if X = (12 ,8 ,8 ,8 ,6 ,3 ,2 ,1)  and p = ( 9 , 7 , 7 , 5 , 4 , 1 , 1 )  then 6 = X - p is a 
boundary strip, corresponding to  the shaded boxes in the following Young diagram of 
A: 

for x i ( n ) .  

The length of B is equal to the number of boxes of B and is denoted by 101. In 
general B consists of k connected parts where e(') is the upper 
right section and is the lower left section. These connected parts are the border 
strips of 0 (Macdonald 1979, p 31). In example (3), 6 = A - p  consists of four parts or 

. . . , 
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border strips. Denote by r(B(J)) (respectively c(e(j))) the number of rows (respectively 
columns) of d j )  minus 1, and let 

k k 
r(e) = @)) c(s) = c(e(j)). 

j = 1  j = 1  

In example (3), we have r(B(')) = 0, r(B(2))  = 3, 

exist some simple relations: 

= 1, P ( B ( ~ ) )  = 0, c(B( ' ) )  = 2, 
= 3, c ( B ( ~ ) )  = 1 and c ( O ( ~ ) )  = 0, thus .(e) = 4 and c(0) = 6. Note that there 

101 = r(e) +number of columns of e 
!e! = c(e) + number of rows of 0 

JBJ = r(B) + ~ ( 0 )  + k. 
Definition. Let 0 = X - p be a boundary strip consisting of k connected parts. Then 

(5) r(0) 4 0 )  - 1 ) k - l .  f e ( d  = f A - , ( d  = (-1) 4 (P 

Lemma, 

where the summation is over all X such that X - p is a boundary strip of length d. 

Proob From (2) it follows that 

d-1 

(7) 
b d-b-1 

8p(t)Pd(q;t) = 4 Sp(t)s(d-b,lb)(t). 
b=O 

The idea of the proof is as follows: we use the Littlewood-Richardson rule (Macdonald 
1979, p 68) to calculate sys(d-s,lb), and collect the terms in the right-hand side of (7) 
having the same sA. I t  IS quite remarkable that the q-dependent coefficient of sA 
becomes such a simple expression. 

In order to calculate S ~ S ( ~ - ~ , ~ S )  one has to extend the Young diagram of p in all 
possible ways to the Young diagram of a partition X such that X - p corresponds to 
a tableau T consisting of (d - b) Is, one 2, one 3, . . ., one b and one b + 1, and such 
that w(T)  is a lattice permutation (Macdonald 1979, p 68). Let us first investigate 

, with necessarily (I 6 0, y < 6, whether T can have a 2 x 2 block of the form 

(I < y and p < 6. p can be any of the numbers { 1 , 2 , .  . ., b +  l}, but since w(T)  must 
be a lattice permutation and every number > 1 appears only once in T ,  it follows that 
all numbers less that  p have been used in previous rows and thus (I = 1. Then we 
must have y > 0 (since y > 1 and all numbers < p have been used), and 6 > p. But 
as w(T) has to be a lattice permutation, we can only have 6 = p + 1. Then y > p 
and y 6 p + 1 lead to only one possibility: y = p + 1. This is forbidden since p + 1 

El 
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can appear only once. It follows that every term si in sps(d -s , lb )  is such that X - p 
is a boundary strip. 

The next task is to collect all the q-dependent coefficients of a fixed sA in the right- 
hand side of (7). Before we proceed with the general proof, it is useful to consider 
an example. Let p = ( 9 , 7 , 7 , 5 , 4 , 1 , 1 ) ,  d = 14, and X = (12 ,8 ,8 ,8 ,6 ,3 ,2 ,1 ) ,  as 
in figure (3). We consider all tableaux T of shape B = X - p of weight (d - b ,  16) 
( b  = 0 , 1 , .  . . , d - 1) such that w(T)  is a lattice permutation. For the first part of 8, 
d'), there is only one possible filling of the boxes, namely m. For the second 
part of 0, e(*), there are two possible choices for the number in the top right box of 
O('): either 1 or 2. Once the uppermost right box of O(') has been filled, there is no 
choice for the rest of O('), and so there are two possible fillings of the boxes of 8(2), 

El El 
namely and J--J---J~ One can proceed with d3) and d4), leading to 

the following eight possible fillings of 0: 

1 1 3  1 1  4 '  

Every path in this binary tree from the root to a leaf corresponds to an allowed tableau 
T of shape 0, and at each branch the numbers with which part O(Jj is filled are given, 
For each filling one can then find the partition (d - b, 16) from which it originates, 
simply by taking the largest number in the tableau and identifying it with b-  1. Thus 
to every filling, and hence to every leaf of the tree, there corresponds a contribution 
(-l)6qd-b-1 from (7) .  These contributions have been given in (8), and one sees that 
their sum is equal to q6(q - 1)3 = (-lY(')q'('j(q - l)'-'. 

Let us now return to the proof of the general case. For 8('),  the number in the 
uppermost right box is 1. Suppose O ( ' j , . .  . , O ( J - l )  have been filled, and the numbers 
used in this filling so far are { 1 , 2 , 3 ,  . , . , p - 1). Then there are only two possibilities 
for the number in the uppermost right box of O(J): either 1 or p. Moreover, once the 
uppermost right box of a connected part O( j )  has been filled, there is no choice for the 
rest of the boxes of O( j ) ,  if we want to satisfy the lattice permutation rule. It is one of 
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the two following fillings: 

. (9) 
4 1  d l  N,,,lln orH,,,l i"i 

1 p"+1 
P" + 1 P " t 2  

It follows that there are 2' possible fillings of 6 ,  with k the number of connected parts 
of 6 ,  i.e. there are 2' tableaux T of shape 6 = X - p with weight (d - b, 1') (b = 
0,1, . . . , d -  1) and such that w(T) is a lattice permutation. Each filling corresponds 
to a path from the root to a leaf in a binary tree of depth t ,  where every vertex at 
depth j is associated with a filling of in (9) the two possibilities are respectively 
the ieft and the right SUCCCSSO~ of the vertex associated with 6(j-i), From (9) it follows 
that 

for every vertex of the tree which is not a leaf, the number of 1s in the 
left successor is one more than the number of 1s in the right successor. (10) 

I" " C Y ~ i l l l l l l l r  lllr y-"Cy.C.'YC.A" C"ClllCICllY CY"C"p"UU."8 to  8. fi!!iiig, oiie coiiiits the TP, Ae+-.-L- the ,-A,,,,A,,+ n-eacLd +,....,o..,.n,l:nm 

number of 1s appearing in all the 8 ( J )  for a path in the binary tree starting at the 
root and ending in a leaf; this number of 1s is d - b = 101 - 6 ,  and thus the coefficient 
associated to the leaf is (-l) 'qd-'-l .  Consider the path to  the leftmost leaf of the 
tree : the total number of 1s is equal to the number of columns of 8, so i t  follows from 
(4a) that the coefficient corresponding to  this leaf is (-l)r(')ql'l-r(')-l, which is equal 

the tree: the total number of 1s is equal to the number of columns of 0 minus (k - l), 
so the coefficient is (-l)'(')+'-'q'('). For an arbitrary leaf, let the path consist of i 
steps to the left and k - 1 - i steps to the right in any order. Then it follows from 
(10) that the coefficient associated with this leaf is (-1)'(8)+'-'-iqc(B)+i. Therefore 

0 

Applying the lemma for fi  = 0, and successively for p,,(q;t), p p 2 ( q ; t ) ,  ..., and 

( - p q c ( ' ) + x - '  accordi=g to  (dc), Co..i&r next the p&h the righ?mo.t l egof  

the sum of all coefficients at the leaves of the tree is (-l)r(')qc(')(q - l)'-'. 

comparing with (l) ,  one finds 

Theorem. Let p = (pl, p2 , .  . . ,pm) and X be partitions of n, then 

m 

(i I) 

summed over all sequences of partitions S = (A('), A('), . . .,A("')) with 0 = A(') c 
A(') c . . . c A@" = X such that A(') - is a boundary strip of length pi .  
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Ezample. Let n = 4 and p = (2,2).  The following gives a list of all possible diagrams 
built with two boundary strips of length 2. The notation is such that the boxes of 
A(i )  - are labelled by the number i (do not confuse this labelling with the filling 
of the tableaux in the proof of the lemma): 

q2 d n  - 1) q2 - ¶  - q  1 -(q-1)  1 

The q-coefficient written underneath each sequence of two boundary strips of length 
2 is ni=, fx(i)-x~,-,)(q). Thus we obtain for p = (2,2): 2 

x x : ( d  

The expressions for xi(¶) for special values of X or p are easily obtained from (11): 

if X = (n - b, 1') 
otherwise 

xtl.)(q) = xtl.) = number of standard Young tableaux of shape A ,  

These special caseai together with other examples; can be verified using the tables of 
King and Wybourne (1991). 

Finally, it should be noted that a result similar to (11) has been obtained by Ram 
(1990), using very different techniques. The existence of this preprint was pointed out 
to the author after the completion of the present manuscript. 
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